欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产

China Focus: Data-labeling: the human power behind Artificial Intelligence

Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
Video PlayerClose

BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

SUPERVISED LEARNING

As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

However, for researchers, the current AI technologies are still quite limited and at an early stage.

Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

QUALITY CHECKING

For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

"I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

HUMAN IN LOOP

A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377521541
欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产
亚洲狠狠爱一区二区三区| 日韩在线卡一卡二| 精品中文字幕视频| 欧美成人基地| 欧美激情伊人电影| 精品久久不卡| 亚洲一区二区高清| 91精品无人成人www| 一区二区三区中文免费| 天天色综合社区| 亚洲国产精品影院| 三大队在线观看| 欧美性猛交xxxx黑人交| 尤物视频最新网址| 日韩精品中文字幕久久臀| 亚洲欧美综合久久久久久v动漫| 色婷婷av一区二区三区大白胸 | 亚洲小视频在线观看| 亚洲精品无播放器在线播放| 搡老女人一区二区三区视频tv| 精品国产乱码一区二区三区| 久久精品国产精品亚洲| 国产欧美日韩一区二区三区四区| 九九热视频这里只有精品| 国产在视频线精品视频www666| 韩国一区二区电影| 伊人成年综合电影网| 国产日韩欧美综合精品| 国产成人精品免费网站| 青草网在线观看| 亚洲一区二区三区四区五区中文| 久久婷婷综合色| 欧美中文一区二区三区| www.5588.com毛片| 久久6免费高清热精品| 亚洲草久电影| 久久久久久久久一区二区| 成人免费视频播放| 欧美婷婷精品激情| 69堂亚洲精品首页| eeuss鲁片一区二区三区| 青青草成人在线| 日本欧美加勒比视频| 久久久久久久久久久久久国产| 欧美激情一区三区| 伦理片一区二区| 精品视频久久久久久久| 日韩精品四区| 九九九九九精品| 国产精品欧美综合在线| 国产女人18毛片水真多18| 亚洲人成在线电影| 中文字幕一区二区三区欧美日韩 | 熟妇女人妻丰满少妇中文字幕| 色婷婷av久久久久久久| 高清在线一区二区| 国产精品入口尤物| eeuss国产一区二区三区| 冲田杏梨av在线| 精品久久久网站| 日韩中文在线电影| 日日噜噜噜噜夜夜爽亚洲精品| 中文字幕精品在线不卡| 中文字幕高清视频| 欧美激情综合色综合啪啪五月| 好看不卡的中文字幕| 免费的av在线| 欧美专区亚洲专区| 国产精品手机在线播放| 蜜桃狠狠色伊人亚洲综合网站| 国产精品久久综合| 在线视频这里只有精品| 国产成人精品日本亚洲| av在线播放不卡| 国产精品久久久久久久无码| 日韩一区二区三区xxxx| 日本欧美韩国一区三区| 午夜精品一区二区三区在线视频 | 国产精品红桃| 超碰免费在线公开| 欧美美女黄视频| 国内黄色精品| 中文字幕久久综合| 欧美日韩黄色影视| 成人在线免费视频观看| 色撸撸在线观看| 欧美精品日日鲁夜夜添| 午夜精品视频一区二区三区在线看| 欧美精品在线一区| 色综合天天综合| 国产精品最新| 成人在线免费观看视频网站| 日韩欧美精品三级| 亚洲另类视频| 亚洲午夜精品一区| 欧美国产极速在线| 91蜜桃在线观看| 亚洲人做受高潮| 99精品国产高清在线观看| 亚洲国产一区视频| 香蕉精品久久| 中文字幕日韩精品无码内射| 亚洲激情在线观看视频免费| 老司机亚洲精品| 色综合久久久无码中文字幕波多| 欧美成人午夜剧场免费观看| 99精品欧美一区二区三区小说 | 亚洲午夜av| 日本a√在线观看| 精品综合久久久久久97| av日韩在线网站| 岛国毛片在线观看| 久久久久久久有限公司| 7777女厕盗摄久久久| 伊人狠狠色j香婷婷综合| 污色网站在线观看| 97超级碰碰碰久久久| 一区免费观看视频| 色婷婷精品视频| 久久久久久久久久伊人| 伊人成人开心激情综合网| 成人性色生活片| 亚洲成人生活片| 欧美裸体一区二区三区| 国模吧视频一区| 4438x全国最大成人| 国产精品久久久久久五月尺| 午夜精品久久久久久久久久久 | 99视频在线精品| 香蕉久久一区| 一本二本三本亚洲码| 日韩精品久久久久久福利| 激情综合五月婷婷| 色综合一区二区日本韩国亚洲| 精品无码久久久久国产| 精品裸体舞一区二区三区| 激情文学综合插| xxxx日本少妇| av电影一区二区三区| 中日韩午夜理伦电影免费| 久久久青草青青国产亚洲免观| 99精品女人在线观看免费视频| 欧美日韩一区二区三| 日韩精品极品在线观看播放免费视频| 9色精品在线| 久久中文字幕人妻| 鲁丝一区二区三区免费| 精品无人区太爽高潮在线播放| 精品一区二区三区免费播放| www.超碰在线观看| 久久久久久久9| 91精品国产91久久久久久吃药| 一区二区视频在线看| 亚洲欧洲美洲一区二区三区| 岛国精品资源网站| 欧美日韩综合另类| 最好看的2019年中文视频| 国产精品每日更新在线播放网址| 亚洲大片精品免费| japan高清日本乱xxxxx| 精品一区二区三区国产| 国产一区二区三区免费视频| 国产精品久久福利| 亚洲激情欧美| 成人高潮免费视频| 人妻熟妇乱又伦精品视频| 国产精品久久久久福利| 日韩一区二区三区电影| 久久亚洲二区三区| 91精品国产乱码久久久久久| 国产在线观看h| 国内精品国产三级国产99| 韩国三级日本三级少妇99| 在线一区二区三区四区五区 | 日本888xxxx| av蓝导航精品导航| 最新国产成人av网站网址麻豆| 中文字幕亚洲成人| 国产亚洲永久域名| 91精品啪在线观看国产手机| 无套内谢丰满少妇中文字幕| 欧美日韩一区二区三区免费| 欧美激情a在线| 9191成人精品久久| 国产日韩精品一区二区三区| 中文国产一区| 91精品尤物| 成人性生活免费看| 国产女主播自拍| 成人自拍视频网站| 欧美巨猛xxxx猛交黑人97人| 欧美日韩亚洲综合一区二区三区| 懂色一区二区三区免费观看| 91精品久久久久久久久久不卡| 无码人中文字幕| 日本人视频jizz页码69| 婷婷精品国产一区二区三区日韩 | 国色天香2019中文字幕在线观看| 欧美在线视频不卡| 中文字幕成人网| 青草av.久久免费一区| 国语产色综合| 欧美黑人猛猛猛| 亚洲av无码久久精品色欲| 欧美日韩午夜爽爽| 成人免费在线看片| 97国产精品视频人人做人人爱| 欧美一区二区黄| 亚洲成人黄色影院| 99国产精品99久久久久久| 国产亚洲亚洲| 日韩精品网站| gogo久久日韩裸体艺术| 欧美人与禽zoz0善交| 日本高清久久久| 国产成人永久免费视频| 麻豆久久久av免费| 国产在线视频欧美| 欧美精品久久久久久久久久| 精品国产免费人成电影在线观看四季| 国产拍揄自揄精品视频麻豆| 国产综合色在线视频区| 99热在线精品观看| 日韩一区自拍| 91午夜精品| 国产成人久久久久| 国产女主播喷水高潮网红在线| 激情婷婷综合网| 大片在线观看网站免费收看| 久久精品国产精品国产精品污| 欧洲成人免费视频| 欧美激情亚洲一区| 色偷偷偷综合中文字幕;dd| 日韩美女视频一区二区在线观看| 亚洲一区二区高清| 亚洲国产精品t66y| 91麻豆免费在线观看| 国产精品一区二区黑丝| 久久综合中文| 噜噜爱69成人精品| 亚洲乱码视频| 亚洲福利一区| 欧美精品一级| 亚洲视频电影在线| 久久久国产精品| 久久人体视频| 日本道不卡免费一区| 综合色就爱涩涩涩综合婷婷| 国产精品自在| 久久男人av| 91精品啪在线观看国产手机| 日韩一区二区三区精品| 99精品国产九九国产精品| 亚洲成人生活片| 日本中文字幕视频一区| 亚洲av鲁丝一区二区三区| 婷婷综合在线视频| 国产精品免费在线视频| 永久久久久久久| 亚洲精品伊人| 涩涩屋成人免费视频软件| 成人网av.com/| 一区二区在线免费播放| avtt久久| 国产精品流白浆在线观看| av综合网址| 黑人操亚洲人| 欧美第十八页| 亚洲人成免费| 天堂va蜜桃一区二区三区漫画版| 亚洲少妇诱惑| 麻豆精品一区二区三区| 国产suv精品一区二区三区| 国产成人精品亚洲日本在线桃色| 国产麻豆9l精品三级站| 成人免费看视频| 国产视频一区在线播放| 国产精品传媒在线| 五月婷婷久久丁香| 精品婷婷伊人一区三区三| 在线成人高清不卡| 欧美精品一区二区高清在线观看| 日韩精品一区二区三区视频| 亚洲精品xxx| 日韩一区二区福利| 久久久久亚洲精品成人网小说| 久久久日本电影| 国产日韩精品在线播放| 狠狠久久综合婷婷不卡| 亚洲伊人婷婷| 国产福利视频在线播放| 丰满少妇中文字幕| 日本黄色激情视频| aaa国产精品| 99久久夜色精品国产亚洲1000部| 午夜亚洲福利| 久久国产综合精品| 久久久久久一二三区| 亚洲午夜免费福利视频| 5858s免费视频成人| 在线播放国产一区中文字幕剧情欧美| 国产一区二区激情| 日本sm极度另类视频| 国产伦视频一区二区三区| 中文字幕中文字幕一区三区| 99999精品视频| 午夜视频在线观看国产| 亚洲一级生活片| 欧美女王vk| 日韩精品亚洲一区二区三区免费| 国产99久久精品| 亚洲综合视频网| 日韩一区二区视频在线观看| 久久精品国产69国产精品亚洲| 26uuu久久噜噜噜噜| 极品校花啪啪激情久久| 国产日韩欧美精品在线观看| 成人欧美精品一区二区| 电影91久久久| 欧美va天堂在线| 成人天堂资源www在线| 亚洲一区二区欧美激情| 亚洲国产精品yw在线观看| 5252色成人免费视频| 欧美成人第一区| 九热视频在线观看| 18岁成人毛片| 中文一区一区三区免费在线观看| 国内国产精品久久| 一区2区3区在线看| 日韩精品欧美激情| 国产欧美精品va在线观看| 糖心vlog在线免费观看| 欧美在线一级片| 美女久久99| 国产一区二区不卡在线| 激情亚洲一区二区三区四区| 国产午夜精品一区理论片飘花 | 大白屁股一区二区视频| 欧美日韩国产中文精品字幕自在自线| 51精品视频一区二区三区| 国内精品中文字幕| 日韩成人av网站| 风韵丰满熟妇啪啪区老熟熟女| 可以直接看的黄色网址| 亚洲精品1区| 亚洲欧美区自拍先锋| 精品呦交小u女在线| 91久久国产婷婷一区二区| 自拍日韩亚洲一区在线| 欧美性生交大片| 亚洲精品三级| 亚洲靠逼com| 少妇精69xxtheporn| 免费一区二区三区在在线视频| 福利在线一区二区三区| 一区二区三区免费在线看| 六月丁香婷婷色狠狠久久| 色婷婷久久99综合精品jk白丝| 色婷婷av一区二区三区在线观看| 99久久精品免费看国产一区二区三区| 日本黄xxxxxxxxx100| 99re6热在线精品视频| 亚洲国产一区二区三区a毛片| 国产欧美一区二区在线观看| 亚洲黄色免费三级| 国产精品sss| 一区二区三区四区影院| 日韩欧美一区二区三区在线视频 | 日本一区二区在线观看视频| 波多野结衣一区| 国产欧美一区二区精品久导航| 欧美精品一区二区三区蜜桃视频| 国产精品一区二区三区在线播放 | 亚洲一区二区日韩| 中文字幕在线观看一区二区| 在线观看国产精品淫| 天天综合狠狠精品| 91香蕉视频污在线观看| 视频在线观看国产精品| 欧美在线一区二区三区| 国产精品日韩在线播放| 在线观看亚洲色图| 日韩dvd碟片| 亚洲免费在线播放| 久久青草福利网站| 男女午夜激情视频| 你微笑时很美电视剧整集高清不卡| 成人免费视频播放| 亚洲欧美成人在线| 亚洲视频导航| 国产一区二区三区免费在线| 国产一区二区调教| 日韩av在线资源| 亚洲国产精品久久久久婷婷老年| 久久亚洲无码视频| 久久精品国产亚洲aⅴ| 精品国产一区久久| 鲁丝片一区二区三区| 国产真实乱在线更新|