"/>

欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产

Scientists teach computers to recognize cells, using AI

Source: Xinhua    2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

Editor: yan
Related News
Xinhuanet

Scientists teach computers to recognize cells, using AI

Source: Xinhua 2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

[Editor: huaxia]
010020070750000000000000011105521371069391
欧美人禽zoz0强交_成人免费看aa片_欧美精品一区二区三区在线播放_91成人国产
亚洲v精品v日韩v欧美v专区| 影音先锋在线一区| 亚洲18色成人| 天天干在线影院| 国产欧美日韩不卡| 水蜜桃在线免费观看| yourporn久久国产精品| 最近中文字幕免费mv| 2022国产精品视频| 欧美激情视频免费看| 最新国产精品久久精品| 少妇激情一区二区三区| 亚洲线精品一区二区三区| 国产一区再线| 精品一区二区三区视频在线观看 | 蜜桃精品一区二区| 欧美一个色资源| 蜜桃av.com| 亚洲色图综合久久| 日韩mv欧美mv国产网站| 国模吧一区二区三区| 91超碰国产精品| 国产区精品在线观看| 美女精品一区| 一级日韩一区在线观看| 国产日韩欧美高清在线| 日韩欧美国产片| 欧美色男人天堂| 欧美88888| 玖玖视频精品| 香蕉视频在线网址| 中文字幕制服丝袜成人av| 国产精品久久久久久久av福利| 一本大道久久a久久综合| 影音先锋制服丝袜| 亚洲美女av黄| 精品99久久| 成人a在线视频| 国产精品夜夜嗨| 狠狠爱免费视频| 在线精品国精品国产尤物884a| 久久久久久www| 疯狂做受xxxx欧美肥白少妇| 久久嫩草捆绑紧缚| 欧美性xxxxxxxxx| 欧美日韩国产黄色| 欧美日韩xxxxx| 亚洲综合不卡| 精品免费久久久久久久| 欧美日韩国产在线看| 99久久99久久精品国产| 欧美日韩亚洲综合一区 | 麻豆一区一区三区四区| 日本午夜人人精品| 国产一区二区美女诱惑| 午夜欧美福利视频| 欧美成人一区二区三区片免费| 激情亚洲另类图片区小说区| 亚洲一区制服诱惑| 久久久久国产精品人| 午夜视频在线观| 亚洲在线视频免费观看| 貂蝉被到爽流白浆在线观看| 欧美丰满老妇厨房牲生活| 亚洲永久免费精品| 久久国产亚洲精品无码| 欧美一区二区视频在线观看| 在线日本制服中文欧美| 精品国产免费一区二区三区| 亚洲精品美国一| www.com.av| 国产精品白嫩美女在线观看| 成熟亚洲日本毛茸茸凸凹| 在线黄色免费看| 亚洲四色影视在线观看| 伊人影院久久| 国产欧美日韩小视频| 欧美人成免费网站| 日韩欧美在线中字| 永久域名在线精品| 欧美午夜精品久久久久久孕妇 | av黄色一级片| 欧美黄色性视频| 激情综合网激情| 亚洲综合av在线播放| 中文字幕视频在线免费欧美日韩综合在线看| 欧美一区综合| 国产欧美精品aaaaaa片| 日韩精品一区二区三区视频| 一区二区三区网站 | 99香蕉久久| 久久一区二区精品| 色视频成人在线观看免| 国产欧美一区二区精品久久久| 精品无码久久久久国产| 欧美日韩国产精品一区| 亚洲免费福利一区| 亚洲巨乳在线观看| 97国产一区二区| 国产传媒在线看| 国产精品自拍偷拍| 久久精品盗摄| 在线播放国产视频| 欧美在线免费看| 国产精品美女久久久久久2018| 国产日韩欧美在线观看视频| 国产aⅴ精品一区二区三区黄| 亚洲综合在线第一页| 久久综合五月婷婷| 正在播放一区二区三区| 欧美精品一区视频| 日本成人在线电影网| 国产人成视频在线观看| 日本久久精品视频| 亚洲三级理论片| 免费看日本一区二区| 激情五月五月婷婷| 亚洲香蕉伊综合在人在线视看| 国产一区二区剧情av在线| 亚洲综合欧美综合| 国产一区视频观看| 日韩女优毛片在线| 奇米一区二区三区av| 实拍女处破www免费看| 91情侣在线视频| 色婷婷精品久久二区二区蜜臂av| 亚洲人metart人体| 日本在线播放一区二区| 国产成人精品网站| 午夜a成v人精品| 亚洲欧美综合国产精品一区| 亚洲精品国产久| 国产不卡在线观看| 狠狠久久亚洲欧美专区| 今天的高清视频免费播放成人| 潘金莲一级淫片aaaaa| 国产精品久久激情| 欧洲精品一区二区三区在线观看| 亚洲精品极品| 人妻av无码一区二区三区| 国产精品成人观看视频免费| 日韩一区二区三区免费看| 日韩高清国产一区在线| 欧美人与禽zoz0善交| 日本欧洲国产一区二区| 亚洲亚裔videos黑人hd| 国产日韩亚洲欧美综合| 不卡一区综合视频| 亚洲午夜精品在线观看| 国产精华一区二区三区| 亚洲精品国产精品国产自| 91年精品国产| 日韩片欧美片| 丝袜美腿中文字幕| 日韩色妇久久av| 乱亲女秽乱长久久久| 亚洲一区中文日韩| 国产一区二区三区久久久久久久久 | 91毛片在线观看| 欧美日韩伦理| 毛茸茸free性熟hd| 日韩欧美国产二区| 久久亚洲影音av资源网| 亚洲午夜电影在线观看| 久久久国产精品一区二区中文| 国产麻豆视频在线观看| 国产一区二区三区播放| 欧美在线视频网站| 51精品久久久久久久蜜臀| 国产v日产∨综合v精品视频| 国产乱码精品一区二区三区四区| 午夜免费视频网站| 欧美精品激情视频| 欧美日韩国产电影| 波多野结衣亚洲一区| 欧美国产一级| www黄色av| 成人资源视频网站免费| 中文字幕欧美国内| 精品久久久久久久中文字幕| 国产一区二区三区av电影| 欧美在线电影| 极品蜜桃臀肥臀-x88av| 国产在线青青草| 99精彩视频在线观看免费| 中文字幕精品久久| 色嗨嗨av一区二区三区| 成人aaaa免费全部观看| 中文字幕一区二区av| 好吊日在线视频| 亚洲精品久久久中文字幕| 免费成人看片网址| 欧美一区视频在线| 亚洲二区在线播放视频| 一区二区三区国产精品| 伊人久久大香线蕉无限次| 日本黄色网址大全| 国产性xxxx18免费观看视频| 久久精品国产第一区二区三区最新章节 | 欧美日韩一二三四| 后入内射无码人妻一区| 中文av一区二区三区| 久久久久国色av免费观看性色 | 性欧美丰满熟妇xxxx性仙踪林| 人妻av无码专区| 精品国产一区二区三区麻豆免费观看完整版 | 在线综合视频播放| 国产精品你懂的| 裸体在线国模精品偷拍| 99免费精品| 51亚洲精品| 我和岳m愉情xxxⅹ视频| 日韩激情免费视频| 日本一区二区三区www| 国产精品美女www爽爽爽视频| 国产一区二区三区直播精品电影| 欧美性大战久久久| 亚洲免费在线观看| 91亚洲精品乱码久久久久久蜜桃| 国产精品一区毛片| 欧美岛国激情| 国产成人av免费观看| 波多野结衣家庭教师视频| 性欧美大战久久久久久久免费观看| 国产精品自产拍在线观看| 久久全国免费视频| 在线成人一区二区| 亚洲第一二三四五区| 欧美亚洲免费在线一区| 亚洲一区二区三区三| 国产区在线观看成人精品 | 国产婷婷色一区二区三区| 韩日欧美一区二区三区| 亚洲性人人天天夜夜摸| 成人影院在线| 欧美三级电影在线| 午夜欧美福利视频| 日本一本二本在线观看| 国产一级大片免费看| 欧美日韩综合精品| 国产伦精品一区二区三区视频免费 | 久久精品国产99| 天堂av在线一区| 国产欧美丝祙| 亚洲三级毛片| 亚洲欧洲视频| 亚洲激情在线| 激情欧美日韩一区| 亚洲一区电影在线观看| 国产激情av在线| www.久久av| 国产一级久久久久毛片精品| 9.1成人看片免费版| 日韩无码精品一区二区| 中文字幕人妻一区| 四虎成人免费视频| 在线播放av网址| 国产国语老龄妇女a片| 中文字幕avav| 国产高潮失禁喷水爽到抽搐| 性活交片大全免费看| 丰满少妇xbxb毛片日本| 精品人妻一区二区免费视频| 国产精品嫩草av| 女人床在线观看| 97视频在线免费| 日韩av综合在线观看| 免费无码av片在线观看| 四季av一区二区| 992tv人人草| 黄色国产在线视频| 野外性满足hd| 顶级黑人搡bbw搡bbbb搡| 黄色a级片在线观看| 精品国产一级| 女同一区二区三区| 日本一区二区免费高清| 欧美在线影院| 老司机久久99久久精品播放免费| 免费成人性网站| 国产.欧美.日韩| 国产亚洲欧洲997久久综合| 国产精品久久久久aaaa樱花 | 久久99精品久久久久久| www.亚洲精品| 国产精品久久久久久久浪潮网站| 一区二区三区在线播| 欧美日韩亚洲系列| 欧美成人三级电影在线| 在线观看国产欧美| 久久久伊人日本| 国产欧美一区二区三区久久| 国内精品视频免费| 一区二区三区四区免费观看| 黄色一级大片在线观看| 麻豆av免费看| 国产精品99久久久久久成人| 农村少妇一区二区三区四区五区| 国产精品成人一区二区不卡| 男人的天堂亚洲在线| 懂色av中文字幕一区二区三区| 欧美国产一区视频在线观看| 精品久久香蕉国产线看观看亚洲| 91精品福利在线一区二区三区 | 欧美美女视频| 亚洲一卡久久| 不卡一区在线观看| 麻豆精品国产传媒mv男同 | 久久久久国色av免费观看性色| 国产有码一区二区| 日韩影片在线播放| 毛片av免费在线观看| 亚洲欧美日韩国产精品| 日韩中文综合网| 国产久一一精品| 性欧美激情精品| 国产精品v欧美精品v日韩| 福利在线小视频| 香蕉视频色在线观看| 中文字幕另类日韩欧美亚洲嫩草| 免费成人结看片| 天堂蜜桃91精品| 中文字幕一区二区在线观看| 欧美日韩国产小视频| 精品国产一区av| 97人人模人人爽视频一区二区 | 欧美日韩国产精品成人| 蜜臀久久99精品久久久久久宅男| 国产啪精品视频网站| 特级西西444| 黄色免费视频网站| 女仆av观看一区| 99视频这里有精品| 激情成人综合| 国产亚洲一区二区三区在线观看| 欧洲精品中文字幕| 欧美大片第1页| 欧美久久久久久一卡四| 污污网站免费观看| 亚洲一区导航| 99re国产精品| 亚洲男女毛片无遮挡| 亚洲成人久久久久| 国产精品视频地址| 免费网站在线观看视频| 山东少妇露脸刺激对白在线| 欧美r级电影| 久久久久久亚洲综合| 日韩欧美国产不卡| 国产精品久久久久不卡| 毛片av在线播放| 女人裸体性做爰全过| 韩国在线一区| 亚洲免费毛片网站| 中文在线资源观看视频网站免费不卡 | 欧美美女黄色网| 精品国产成人亚洲午夜福利| 婷婷伊人综合| 中文字幕成人av| 亚洲国产精品久久精品怡红院| 3d精品h动漫啪啪一区二区| 中文字幕第21页| 欧美一区二区三区红桃小说| 国产精品1区2区3区在线观看| 欧美图片一区二区三区| 国产成人精品网站| 久久久久久香蕉| 成人涩涩网站| 成人精品一区二区三区四区| 91麻豆精品国产91久久久久久久久 | 久久人人97超碰com| 亚洲精品在线三区| 国产亚洲欧美一区二区| 亚洲视频天天射| 欧美搞黄网站| 亚洲综合自拍偷拍| 97精品国产91久久久久久| 日韩av三级在线| 91麻豆精品国产91久久久久推荐资源| 狠狠v欧美v日韩v亚洲ⅴ| 欧美欧美午夜aⅴ在线观看| 国产精品九九九| 91看片破解版| 色琪琪久久se色| 亚洲精品第1页| 欧美激情第99页| av黄色在线网站| 最新精品国偷自产在线| 国产精品免费视频观看| 欧美色图在线视频| 国产精品美乳一区二区免费 | 亚洲国产一区二区三区在线播| 成人在线免费观看av| 五月综合久久| 中文字幕一区二区三区视频| 欧美日韩xxxxx| 久久久久久三级| 色乱码一区二区三区网站| 午夜久久电影网| 国产精品色婷婷视频|